Telepathy, also known as extrasensory perception (ESP), is the ability to communicate or transfer information without using the five traditional senses of sight, hearing, touch, taste, and smell. It is often thought of as a form of psychic ability or a sixth sense.
There are different types of telepathy, including:
Telepathic communication: the transfer of thoughts or ideas between individuals without the use of words or traditional communication methods.
Telepathic perception: the ability to sense or perceive information without using the five traditional senses.
Remote viewing: the ability to see or sense events or locations that are not within the direct line of sight.
The exact mechanisms behind telepathy are not fully understood, and it is still considered a controversial topic in the scientific community. Some researchers believe that telepathy may be linked to quantum physics, while others propose that it may be the result of a heightened level of psychic ability or intuition.
Some theories suggest that telepathy may involve the transfer of information through electromagnetic waves or through a subtle energy field that surrounds the body. It is also proposed that telepathy may be the result of a direct link between the minds of two individuals, allowing for the transfer of thoughts and emotions without the use of words.
Despite the lack of scientific evidence, many people claim to have experienced telepathic communication or perception. Some individuals may be more naturally inclined to telepathic abilities, while others may develop these skills through training or meditation.
The practice of telepathy and extrasensory perception is not always easy and it takes a lot of practice and patience. Some people are more naturally inclined to develop psychic abilities, while others may need to put in more effort. The best way to develop telepathic skills is through regular practice and training. This can include things like:
Meditation
Visualization
Energy work
Practicing telepathic exercises with a partner
There are also many different techniques that can be used to enhance telepathic abilities. For example, some people may find that visualization and mental exercises can help them to focus their thoughts and increase their psychic sensitivity. Others may prefer to use meditation or energy work to help them develop their psychic abilities.
It is important to note that telepathy is not a guaranteed or reliable method of communication. Like any psychic ability, telepathy is subject to error and misinterpretation. It is also important to remember that telepathy should not be used as a replacement for traditional forms of communication. It is best used as a supplement to traditional forms of communication.
Additionally, it is important to be skeptical when it comes to claims of telepathic abilities. Not everyone who claims to have telepathic abilities actually possesses them. And, it’s important to remember that telepathic abilities are not a replacement for traditional forms of communication.
In conclusion:
telepathy is the ability to communicate or transfer information without using the five traditional senses of sight, hearing, touch, taste, and smell. The exact mechanisms behind telepathy are not fully understood, and it is still considered a controversial topic in the scientific community.
It is possible to develop telepathic abilities through practice and training, but it is important to remember that telepathy is not a guaranteed or reliable method of communication.
It’s important to be skeptical when it comes to claims of telepathic abilities, and it’s important to remember that telepathic abilities are not a replacement for traditional forms of communication.
This article delves into the topic of telepathy, also known as extrasensory perception (ESP), and explores the different types of telepathy and theories behind its mechanisms.
The article also discusses the potential for developing telepathic abilities through practice and training, while highlighting the importance of skepticism and understanding that telepathy is not a guaranteed or reliable method of communication.
Life after death: How quantum physics and biocentrism are redefining our understanding of death
Recent scientific theories have sparked a new conversation about the nature of death and the afterlife. According to quantum physics, death is not the end of our existence, but rather a transition to a parallel universe.
This theory is further supported by the ideas of biocentrism, which suggests that consciousness creates the universe and that time and space are mere illusions.
One of the most notable figures in this debate is the late physicist, Albert Einstein. In a condolence letter to his friend upon his death, Einstein wrote, “Now he has departed from this strange world a little ahead of me.
That signifies nothing:
For those of us who believe in physics, the distinction between past, present, and future is only a stubbornly persistent illusion.” Einstein’s words suggest that he believed in the idea of a continuity of life after death.
Quantum physics laws suggest that life is not made of matter, but rather of vibrations that escape the constraints of time and space. This means that death is not the end of our existence, but rather a transition to a parallel universe.
This theory is supported by the concept of biocentrism, which argues that consciousness creates the universe and that reality is determined by the observer.
Biocentrism is a theory that suggests that life is immortal and that it is at the center of existence, reality, and the cosmos. By adding life and consciousness to the equation, biocentrism is believed by its followers to be the theory of everything.
This theory is further supported by the work of scientist Robert Lanza, who specializes in stem cells, cloning, and regenerative medicine research.
How Life and Consciousness are the Keys to Understanding the True Nature of the Universe” in which he places biology above other sciences and calls for a switch from physics to biology to understand “everything”.
Lanza claims that quantum physics has proved the existence of life after death and that energy is immortal. He also believes that we believe in death because we have been taught that we are dying, however, biocentrism says the universe exists only because the individual is aware of it.
Lanza, along with astronomer Bob Berman, also revisited his controversial theory in their book, Beyond Biocentrism. In this book, they argue that the concepts of time and space are simply tools of our imagination and that the universe itself does not create life.
These theories may seem far-fetched to some, but they are being taken seriously by many scientists and researchers. Biocentrism and quantum physics are providing new insights into the nature of death and the afterlife and are challenging traditional beliefs about the end of life. As science continues to evolve, we may gain a deeper understanding of the true nature of existence and the continuity of life beyond death.
The idea of death being not the end is not just a fantasy, but a scientific theory supported by quantum physics, and Biocentrism. The theories of Einstein, Max Planck, Robert Lanza, and Bob Berman have opened up new and exciting possibilities for understanding the nature of death and the afterlife.
These theories challenge traditional beliefs about the end of life and suggest that death is not the end, but a transition to a parallel universe. As science continues to evolve, we may gain a deeper understanding of the true nature of existence and the continuity of life after death.
If you learn something new from these articles, share it with your friends and give them a chance too.
Please don’t forget to like and subscribe to our youtube channel.
Quantum computing is a revolutionary technology that has the potential to change the way we think about computing. Unlike classical computers, which use binary digits (bits) to store and process information, quantum computers use quantum bits or qubits. These qubits can exist in multiple states simultaneously, allowing quantum computers to perform certain types of computations much faster than classical computers.
Building the Qubit:
The basic building block of a quantum computer is the qubit. It can be implemented using a variety of physical systems, such as trapped ions, superconducting circuits, and topological qubits. Each of these systems has its own advantages and disadvantages, and scientists and engineers are still working to identify the best approach for building a large-scale, practical quantum computer.
Trapped ion qubits, for example, are highly isolated and can be controlled with high precision, making them well-suited for large-scale quantum computing. Superconducting qubits, on the other hand, are more robust and can be integrated into existing electronics, making them more suitable for the development of small-scale quantum devices. Topological qubits, which are based on the properties of certain materials, are highly resistant to noise and can be used to build fault-tolerant quantum computers.
One of the key challenges in building a quantum computer is controlling the qubits and ensuring they remain stable. Because qubits are highly sensitive to their environment, they must be kept at extremely low temperatures, often less than a degree above absolute zero. Additionally, qubits must be isolated from external noise and interference in order to maintain their quantum state.
This requires the use of advanced cooling and isolation techniques, such as dilution refrigerators and electromagnetic shielding. In addition, qubits must be manipulated using precise control fields, such as microwave and laser beams. The development of these control systems is a major area of research in the field of quantum computing.
Performing Computations:
Once the qubits have been successfully built and controlled, they must be configured and controlled in order to perform computations. This is done using a series of quantum gates, which manipulate the state of the qubits. The outcome of the calculation is read out by measuring the state of the qubits. Because of the principles of superposition and entanglement, a quantum computer can perform certain types of computations much faster than a classical computer.
A key feature of quantum computing is the ability to perform parallel computations, where multiple qubits are used to perform multiple computations at the same time. This allows a quantum computer to perform certain types of computations much faster than a classical computer, which can only perform one computation at a time.
Powerful Algorithm:
One of the most well-known examples of a quantum algorithm is Shor’s algorithm, which can factor integers exponentially faster than the most prominent classical algorithms. Additionally, Grover’s algorithm can search an unsorted database quadratically faster than classical search algorithms.
These algorithms have the potential to revolutionize fields such as cryptography, where they can be used to break encryption codes that are currently considered unbreakable by classical computers. Additionally, quantum computers can be used to simulate complex quantum systems, such as molecules and materials, which can have critical applications in chemistry and materials science.
Despite the promise of quantum computing, it is important to note that the technology is still in its infancy. Building a functional quantum computer that can perform practical tasks is still an ongoing research topic and it
Despite the challenges, many experts believe that the development of quantum computing has the potential to revolutionize the way we live and work. With its ability to perform certain types of computations much faster than classical computers, quantum computing could lead to breakthroughs in fields such as medicine, finance, and cryptography. As technology advances, we can expect to see more and more quantum computing applications in the years to come.
In Short:
Explore the cutting-edge technology of quantum computing and learn about the complex process of building a quantum computer, from the basic building blocks of qubits to the challenges of controlling and configuring them for computation. Discover the potential of this revolutionary technology to change the way we live and work.
Hope this helps. Like Our Facebook Page And See Our Videos on YouTube And Also Fine Us On Social @maktomine
According to the Theory of Nikola Tesla’s 369, there are altogether 1 to 9 digital root numbers that exist. All other higher or lower numbers are the combinations of those digital root numbers. This statement seems quite true when we compare it with the Theory of Absolutivity.The characteristic of these 369 numbers was first revealed from a famous quote by the scientist Tesla. He said –“If you only knew the magnificence of the 3, 6, and 9, then you would have a key to the universe.”
Now, What does he mean by this 369 number?
Banganubad – If we know about the special features of 369. But the key to the world will come to us.
But why are these 3, 6, and 9 so special?
First of all, we need to understand that we do not invent formulas. We just discover it. There are some patterns inherent in nature, following that pattern we have constructed various mathematical formulas. Therefore we can get 2 + 2 = 4 anywhere in the universe.
One of these patterns is – the “Power of 2 Binary System”.
That is, something starts from one and continues to double each other. Following this pattern, our cells and embryos slowly divide. So this pattern – 1, 2, 4, 8, 16, 32, 64, 128, 256… Many people call it “God’s blueprint”.
Now the feature of this above pattern is –
1
1 x 2 = 2
2 × 2 = 4
4 × 2 = 8
16 —-> 1+6 = 7
32 —- > 3+2 =5
64 —-> 6+4 = 1
128 —- > 1+2+8 = 2
256 —-> 2+5+6 = 4
512 —- > 5+1+2 = 8
That is, if you observe, it is understood that – 1, 2, 4, 8, 7, 5 this pattern is coming back again and again. It is like a pendulum clock swinging back to its initial state. Again if we start from 1 and keep halving it continuously, we get exactly the same pattern back in reverse –
1
1/2 = 0.5 — > 5
0.5/2 = 0.25 — > 2+5=7
0.25/2 = 0.125 —- > 1+2+5 = 8
But if you look carefully, you will see that three numbers are missing in this pattern – 3, 6, and 9. These three numbers are like a free entity above this pattern. Scientist Mark Rodin believes that these three numbers describe a vector in the fourth or third dimension, which he named the flux field.
Now if we take the number 3 and keep doubling it continuously. But we get –
3
3*2 = 6
6*2= 12 — > 1+2 = 3
12*2 = 24 — > 2+4 = 6
This is also a pattern. A pattern oscillating between 3 and 6. But 9 is missing in this pattern.
But does 9 belong to any other pattern?
Yes, absolutely.
If we double this number 9 we get –
9
9*2 — > 18 = 1+8 = 9
18* 2 — > 36 = 3+6 = 9
That is, only the number 9 exists in this pattern.
Now, if we put the three patterns together in a row, we get two poles. Which has 1, 2, 4 on one side and 8, 7,5 on the other side. Everything in the world is like a river flowing from 1, 2, 4 to 8, 7, 5, and back to 1, 2, 4. If you look carefully again, you will understand that 1,2,4 are ahead of 3 and 8,7,5 are ahead of 6.
Again these 3 and 6 are under 9.
3+6 = 9 =6+3
1+2+3+6+7+8+9 = 45—- > 4+5 =9
1+2+4+5+7+8 = 27 —- > 2+7=9
So everything mixed in 9 and 9 is that single entity.
Not only this, there are many other paths from which it is felt that the 369 are hidden within everything.
The symmetry of the three and six dimensions is also quite clearly observed in our nature. For example, six-dimensional symmetry can be seen in the comb of a bee.
In time period:
60 minutes in our 1 hour → 6
In 1 minute 60 seconds → 6
1 day has 24 hours → 2+4=6
In geometric shape:
An angle of a circle is 360°
That 3+6+0=9
Again halving it gives -180°
1 + 8 + 0 = 9
And halving it again gives — 90°
9 + 0 = 9
369 number inside the atom:
Atoms have three parts — neutrons, protons, and electrons.
Again in the case of quarks and leptons, the number is 6
Our season number is 6
Our universe comprises three things — dark matter, dark energy, and ordinary matter.
The number 3 is also quite strange.
It is the only prime number whose sum of previous numbers is the number itself.
0+1+2=3
Maybe if we try, we will find the existence of numbers 3, 6, and 9 in more places in nature.
Are these mere coincidences or coincidences or do the words of Nikola Tesla bear any indication? The future may give us the answer.
thank you, Follow Us on Facebook & See our videos on YouTube
The laws of physics that describe the subatomic world are grouped into quantum mechanics. Scientists don’t yet know, though, how to unify quantum theory and general relativity (which is the best model they have of gravity).
NASA/Goddard Space Flight Center Conceptual Image Lab
Your questions touch on a fundamental (some would say the fundamental) problem in theoretical physics. The easiest way to understand the issue is to think about how the two theories describe the forces of nature.
The general theory of relativity is our best concept of gravity. It states that the presence of mass distorts the space-time grid, like a bowling ball that sits on a stretched rubber sheet. Particles then move in the shortest paths along that distorted grid, a process we interpret as the effects of gravity. Thus, relativity, in essence, gives a geometric interpretation of gravity.
Quantum mechanics, through what physicists call the “standard model,” explains the other three forces of nature. These are the electromagnetic force, which affects electrically charged particles, the strong nuclear force, which holds particles in nuclei together, and the weak nuclear force, which governs some radioactive decays. In the quantum mechanical picture, forces arise through the exchange of things called “virtual particles.”
These particles pop into existence for a short time and then disappear. While they have no analog in our familiar world, the Heisenberg uncertainty principle allows them in the subatomic world.
(One of the basic ideas of this principle is that the uncertainty of a system’s energy is inversely proportional to the uncertainty of its lifetime, so a particle that lives for a very short amount of time — a tiny fraction of a second — has an extremely wide range of possible energies and can never be observed.)
Virtual particles generate a force by a process analogous to two people throwing a medicine ball back and forth, recoiling on each throw. Thus, the quantum mechanical explanation of these forces is essentially dynamic rather than geometric.
The problem deepens because physicists can describe how at high enough energies the three quantum mechanical forces merge together, while gravity remains the odd man out. Another way of posing your questions, then, is to ask why it is so hard to unify gravity with the other forces of nature.
We have two serious candidate theories that attempt this unification. One is “string theory,” which posits that the basic building blocks of matter — quarks and elementary particles like electrons — are actually made of even more fundamental objects called “strings.” The different particles correspond to different modes of vibration of those strings.
The other candidate theory is “quantum loop gravity,” where space-time itself becomes granular (the technical term is quantized) instead of being smooth and continuous at very small distances.
In both theories, we think the exchange of virtual particles called gravitons generates gravity so that gravity becomes a dynamic quantum mechanical force like the other three. Which of these theories, if either, will turn out to be right is something physicists are investigating.
>>> মনে মনে বিশেষ মানুষটির কথা ভাবছিলেন। হঠাৎ বেজে উঠল ফোন। স্ক্রিনে কলারের নাম ভেসে উঠতে দেখেই নিশ্চয় হাঁ হয়ে গেলেন? কী করে সম্ভব? ফোন করেছে সেই বিশেষ পুরুষ বা নারীটি! অথচ তার ফোন করার কোনও সম্ভবনাই ছিল না! কীভাবে ঘটল এমন? তবে শুধু বিশেষ মানুষটি নয়, এমনকী প্রিয় বন্ধু, আত্মীয়ের মধ্যেও এমন ঘটনা ঘটতে দেখা গিয়েছে। এছাড়া খুব নিকট আত্মীয়ের বিপদে পড়ার মতো খারাপ স্বপ্ন দেখা ঘুম ভেঙে যাওয়ার মতো ঘটনাও ঘটে!
কেন এমন হয়?
কিছু কিছু মনোবিজ্ঞানী বলেন, এমন হয় মেন্টাল টেলিপ্যাথির কারণে। কেউ খুব নিবিড়ভাবে অপর ব্যক্তি সম্পর্কে ভাবলে, সেই চিন্তা স্পর্শ করে ওই ব্যক্তিকে। এভাবেই অদ্ভুত যোগাযোগ হয়ে যায় মাঝে মধ্যে।
প্রশ্ন হল কী এই মেন্টাল টেলিপ্যাথি?
মেন্টাল টেলিপ্যাথি: এই প্রক্রিয়ায় কোনও এক ব্যক্তি তার মানসিক অনুভূতি, ভাবনা, ছবি, কথা ইত্যাদি অপর এক ব্যক্তির চেতনায় প্রেরণ করে। অন্যপ্রান্তে থাকা অপর ব্যক্তি ওই চিন্তা, কথা, ভাবনা ও ছবি গ্রহণ করতে পারলে বা বুঝতে পারলে হয় টেলিপ্যাথিক যোগাযোগ। এই প্রক্রিয়ায় ফোন, ইমেল, বা অন্য কোনও মাধ্যমের সাহায্য নেওয়া হয় না। এই প্রক্রিয়া সম্পূর্ণভাবে মানসিক যোগাযোগ।
এই ধরনের মানসিক যোগাযোগ হতে পারে পৃথিবীর দুই প্রান্তে থাকা দুটি মানুষের সঙ্গে। আবার পাশাপাশি দুটি ঘরে থাকা ব্যক্তির মধ্যেও এমন সম্পর্ক স্থাপন সম্ভব। মজার ব্যাপার হল, কিছু কিছু গবেষক বলছেন, মেন্টাল টেলিপ্যাথি হতে পারে দুজন পরিচিত লোকের মধ্যেই যেমন স্বামী-স্ত্রী, প্রেমিক প্রেমিকা, দুই বন্ধু, মা ও সন্তান। তবে সম্পূর্ণ অপরিচিত লোকের সঙ্গেও টেলিপ্যাথিক যোগাযোগ হওয়াও অসম্ভব নয়।
অনেকেই মনে করেন যে, প্রত্যেক মানুষেরই টেলিপ্যাথির মাধ্যমে যোগাযোগ করার ক্ষমতা রয়েছে। তবে টেলিপ্যাথির মাধ্যমে যোগাযোগ স্থাপন করার জন্য দরকার তীব্র মনোসংযোগ।
যোগাযোগ স্থাপনের পদ্ধতি—
মনকে একাগ্র করুন
আগেই বলা হয়েছে, টেলিপ্যাথিক যোগাযোগের জন্য দরকার নিবিড় মনোনিবেশের। তাই আগে মনকে একাগ্র করতে জানতে হবে। মন শান্ত করার জন্য আগে নিরিবিলি জায়গা বাছুন। চোখ বন্ধ করুন। চোখের সামনে একটি আলোক বিন্দুকে কল্পনা করুন। মিনিট কুড়ি এভাবে ধ্যান করুন ও ওই আলোকবিন্দু ছাড়া মন থেকে বাকি সব ধরনের চিন্তা দূরে সরান।
শ্বাস নিন লম্বা ও ধীরে। ধ্যান করার সময় আঁটসাঁট জামাকাপড় পরবেন না। শরীরে কষ্ট হলে মনকে একাগ্র করা সম্ভব নয়। ধ্যান করার একটাই কারণ— চিন্তাকে একমুখী করা। বলা হয়, যাঁরা প্রতিদিন ধ্যান করেন, তাঁরা সহজেই টেলিপ্যাথির মাধ্যমে যোগাযোগ করতে পারেন। অবশ্য আপনার আগে থেকেই মন শান্ত থাকলে ধ্যান করতে নাও হতে পারে।
যোগাযোগ স্থাপন
যে ব্যক্তির সঙ্গে যোগাযোগ করতে চাইছেন, তাকে কল্পনা করুন। মনে করুন, সে ঠিক আপনার সামনে দাঁড়িয়ে বা বসে রয়েছে। মনের চোখ দিয়ে খুঁটিয়ে খুঁটিয়ে দেখুন তাঁর চোখের রং, দেহের আকার, উচ্চতা, চুলের রং। আপনার বার্তার গ্রাহক যদি খুব দূরে থাকে, সেক্ষেত্রে তার ছবি চোখের সামনে রেখেও বার্তা পাঠানোর চেষ্টা করতে পারেন।
এবার কল্পনা করুন, আপনার বার্তা গ্রাহকের সঙ্গে যখন সামনা-সামনি কথা হয়, তখন মনের মধ্যে কেমন আবেগ কাজ করে। সেই অনভূতিগুলি ফের জাগিয়ে তুলুন। বিশ্বাস করতে শুরু করুন যে ওই ব্যক্তির সঙ্গে সত্যিই আপনি যোগাযোগ স্থাপন হয়েছে। সে আপনার যোগাযোগ করার চেষ্টায় সাড়া দিচ্ছে।
বার্তা প্রেরণ
এবার কোনও কথা বা বস্তুর সম্পর্কে ভাবুন। ধরা যাক আপনি বার্তা গ্রাহককে আপেলের ছবি পাঠাতে চান। মনে মনে আপেলের ছবি তৈরি করুন। আপেলের রং, তার আকার সম্পর্কে ভাবুন। চাইলে আপেলে কামড় বসিয়ে তার স্বাদও টের পেতে পারেন। এবার কল্পনা করুন আপেলটি সত্যি সত্যিই, আপনার মন থেকে তার মনে ভেসে যাচ্ছে।
এই সময় মুখে ‘আপেল’ শব্দটিও বলতে পারেন। মনের চোখে দেখুন, ওই ব্যক্তি সত্যিসত্যিই আপনার পাঠানো ‘আপেলটি’ দেখতে পাচ্ছে। তার মুখের ভঙ্গিমায় সেকথা বোঝা যাচ্ছে। এই ভাবে নিজের মনের কথাও বার্তা গ্রাহককে পাঠাতে পারেন। এইভাবে নিজের বার্তা পাঠানো হয়ে গেলে শান্তভাবে শ্বাস নিন ও ছাড়ুন। শরীর আলগা করে দিন। যেন বার্তাটি আপানার মন ও শরীর থেকে ভেসে তার কাছে পৌঁছে গিয়েছে। আর আপনার কোনও দায় নেই।
অনুশীলন করুন
বার্তা আদৌ পৌঁছেছে কি না তা অনেকগুলো বিষয়ের উপর নির্ভর করে। প্রথমত বার্তা গ্রাহক কোন অবস্থায় রয়েছেন। তার মানসিক অবস্থা কেমন। গত কয়েকদিনের মধ্যে আপনার সঙ্গে তার মনোমালিন্যের ঘটনা ঘটেছে কি না ইত্যাদি। তাছাড়া, আদৌ টেলিপ্যাথিক যোগাযোগে আপনি সফল হচ্ছেন কি না তাও জানা দরকার।
তাই দূরে থাকা কোনও আত্মীয় বা বন্ধুর সঙ্গে টেলিপ্যাথির মাধ্যমে যোগাযোগ করার আগে, কাছাকাছি থাকা কোনও এক আত্মীয়ের সঙ্গে বিষয়টি প্র্যাকটিস করুন। দু’জনে একই সময়ে, পাশাপাশি দুটি ঘরে টেলিপ্যাথির মাধ্যমে যোগাযোগ করতে বসুন। আত্মীয়কে বার্তা প্রেরণ করুন। সে কোনও বার্তা বুঝতে পারলে খাতায় লিখে রাখতে বলুন।
প্রথম দিকে হতাশ হতে পারেন। তবে খাতায় সে কী লিখেছে সেটিও দেখুন। যেমন আপনি লাল রঙের আপেলের কথা ভেবেছেন ও তাকে বার্তা পাঠিয়েছেন। আর সে খাতায় লিখেছে ‘লাল’। এমন হলে বুঝতে হবে, ফলাফল খারাপ নয় মোটেই। এইভাবে যোগাযোগ পোক্ত হতে শুরু করলে টেলিপ্যাথির মাধ্যমে দু’জন আলাদা জায়গায় বসে কাটাকুটি খেলতে পারেন। সলভ করতে পারেন একই পাজল! এই ভাবে যোগাযোগ স্থাপন সম্ভব বুঝলে দূরে থাকা ব্যক্তির সঙ্গেও যোগাযোগ করা সম্ভব।
মনে রাখবেন;
মেন্টাল টেলিপ্যাথি তে, দুটি মানুষের মধ্যে মানসিক নৈকট্য থাকাটা খুব জরুরি। কারণ, নৈকট্য না থাকলে ফলাফল সম্পর্কে আপনি জানতেই পারবেন না। বলা হয়, টেলিপ্যাথির মাধ্যমে কানে শুনতে পান না বা চোখে দেখতে পান না এমন মানুষের সঙ্গেও যোগাযোগ করা সম্ভব। এমনকী মনুষ্যেতর প্রাণীর সঙ্গেও টেলিপ্যাথিক যোগাযোগ করা যায়। পোষা কুকুরের সঙ্গে এক পরীক্ষায় দেখা গিয়েছে, মালিক যেই মাত্র অফিস থেকে ঘরে ফেরার কথা ভাবছেন তখনই ঘরে বন্দী কুকুরটি উঠে দাঁড়াচ্ছে!
Put simply, it’s the physics that explains how everything works: the best description we have of the nature of the particles that make up matter and the forces with which they interact.
Quantum physics underlies how atoms work, and so why chemistry and biology work as they do. You, me, and the gatepost – at some level at least, we’re all dancing to the quantum tune.
If you want to explain how electrons move through a computer chip, how photons of light get turned to electrical current in a solar panel or amplify themselves in a laser, or even just how the sun keeps burning, you’ll need to use quantum physics.
The difficulty – and, for physicists, the fun – starts here. To begin with, there’s no single quantum theory. There are quantum mechanics. the basic mathematical framework that underpins it all. which was first developed in the 1920s by Niels Bohr, Werner Heisenberg, Erwin Schrödinger, and others.
It characterizes simple things such as how the position or momentum of a single particle or group of few particles changes over time.
But to understand how things work in the real world, quantum mechanics must be combined with other elements of physics – principally, Albert Einstein’s special theory of relativity, which explains what happens when things move very fast – to create what is known as quantum field theories.
Three different quantum field theories deal with three of the four fundamental forces by which matter interacts: electromagnetism, which explains how atoms hold together; the strong nuclear force, which explains the stability of the nucleus at the heart of the atom, and the weak nuclear force, which explains why some atoms undergo radioactive decay.
Over the past five decades or so these three theories have been brought together in a ramshackle coalition known as the “standard model” of particle physics.
For all the impression that this model is slightly held together with sticky tape, it is the most accurately tested picture of matter’s basic working that’s ever been devised. Its crowning glory came in 2012 with the discovery of the Higgs boson, the particle that gives all other fundamental particles their mass, whose existence was predicted on the basis of quantum field theories as far back as 1964.
Conventional quantum field theories work well in describing the results of experiments at high-energy particle smashers such as CERN’s Large Hadron Collider, where the Higgs was discovered, which probe matter at its smallest scales.
But if you want to understand how things work in many less esoteric situations – how electrons move or don’t move through solid material and so make a material a metal, an insulator, or a semiconductor, for example – things get even more complex.
The billions upon billions of interactions in these crowded environments require the development of “effective field theories” that gloss over some of the gory details.
The difficulty in constructing such theories is why many important questions in solid-state physics remain unresolved – for instance why at low temperatures some materials are superconductors that allow current without electrical resistance, and why we can’t get this trick to work at room temperature.
But beneath all these practical problems lies a huge quantum mystery. At a basic level, quantum physics predicts very strange things about how matter works that are completely at odds with how things seem to work in the real world. Quantum particles can behave like particles, located in a single place, or they can act like waves, distributed all over space or in several places at once.
How they appear seems to depend on how we choose to measure them, and before we measure they seem to have no definite properties at all – leading us to a fundamental conundrum about the nature of basic reality.
This fuzziness leads to apparent paradoxes such as Schrödinger’s cat, in which thanks to an uncertain quantum process a cat is left dead and alive at the same time. But that’s not all. Quantum particles also seem to be able to affect each other instantaneously even when they are far away from each other.
This truly bamboozling phenomenon is known as entanglement, or, in a phrase coined by Einstein (a great critic of quantum theory), “spooky action at a distance”. Such quantum powers are completely foreign to us, yet are the basis of emerging technologies such as ultra-secure quantum cryptography and ultra-powerful quantum computing.
But as to what it all means, no one knows. Some people think we must just accept that quantum physics explains the material world in terms we find impossible to square with our experience in the larger, “classical” world. Others think there must be some better, more intuitive theory out there that we’ve yet to discover.
In all this, there are several elephants in the room. For a start, there’s a fourth fundamental force of nature that so far quantum theory has been unable to explain.
Gravity remains the territory of Einstein’s general theory of relativity, a firmly non-quantum theory that doesn’t even involve particles.
Intensive efforts over decades to bring gravity under the quantum umbrella and so explain all of fundamental physics within one “theory of everything” have come to nothing.
Meanwhile, cosmological measurements indicate that over 95 percent of the universe consists of dark matter and dark energy. stuff for which we currently have no explanation within the standard model, and conundrums such as the extent of the role of quantum physics in the messy workings of life remain unexplained.
The world is at some level quantum but whether quantum physics is the last word about the world remains an open question. Richard Webb